0=16t^2+590t

Simple and best practice solution for 0=16t^2+590t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2+590t equation:



0=16t^2+590t
We move all terms to the left:
0-(16t^2+590t)=0
We add all the numbers together, and all the variables
-(16t^2+590t)=0
We get rid of parentheses
-16t^2-590t=0
a = -16; b = -590; c = 0;
Δ = b2-4ac
Δ = -5902-4·(-16)·0
Δ = 348100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{348100}=590$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-590)-590}{2*-16}=\frac{0}{-32} =0 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-590)+590}{2*-16}=\frac{1180}{-32} =-36+7/8 $

See similar equations:

| (4x-6)=18 | | 0=16t^2+590 | | 23=m+5 | | 3x-5(x-2)=-6=2x-12 | | 9^(x+3)=27 | | 0=-16t^2+610t | | (4x+10)^((1)/(4))-(7x+9)^((1)/(4))=0 | | 3^2m-1=20 | | 7x-5÷4=56 | | 2=x-19.5/4.5 | | 25*x^2+6025*x-500=0 | | (x)=x(x^2+3600) | | (7+x)2=14x | | 2x(2)+10=60 | | 0.3(p-4/3)=5-0.6p | | (x)=x(2x+3600) | | -3/8p=6 | | 2+b-7=89 | | 8s+3912-7s)=49 | | 180=46w | | 3÷10x+1,4=-x+2 | | 10k+-3=6k-15 | | 7^2t=3^5 | | k=-11 | | 6w+-12=12 | | 2y(2y-3)-2y(y-4)=14 | | 1/2x+3/4=3(1/3x+4) | | -28=3m+-42 | | 5x^2+3x+10=14 | | 4+3x-7=60-2x-13 | | 4(-3x+6)=-15x-2 | | 1t(t+1)=2t |

Equations solver categories